Олимпиадные задачи по математике - сложность 4-5 с решениями
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
При какой перестановке <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>2011</sub> чисел 1, 2, ..., 2011 значение выражения <div align="center"><img src="/storage/problem-media/116235/problem_116235_img_2.png"></div>будет наибольшим?
Рассматриваются ортогональные проекции данного правильного тетраэдра с единичным ребром на всевозможные плоскости. Какое наибольшее значение может принимать радиус круга, содержащегося в такой проекции?
Докажите, что при любом разбиении ста "двузначных" чисел 00, 01, ..., 99 на две группы некоторые числа хотя бы одной группы можно записать в ряд так, чтобы каждые два соседних числа этого ряда отличались друг от друга на 1, 10 или 11, и хотя бы в одном из двух разрядов (единиц или десятков) встречались все 10 различных цифр.
Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника: а) больше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_2.gif"> </i>, б) не меньше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_3.gif"> </i>, в) не меньше, чем<i> <img src="/storage/problem-media/111351/problem_111351_img_4.gif"> </i>?
Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника:
а) через 3 шага с точностью до 0,3;
б) через 2007 шагов с точностью до 0,003?
Вдоль стены круглой башни по часовой стрелке ходят два стражника, причём первый из них — вдвое быстрее второго. В этой стене, имеющей длину 1, проделаны бойницы. Система бойниц называется надёжной, если в каждый момент времени хотя бы один из стражников находится возле бойницы. а) Какую наименьшую длину может иметь бойница, если система, состоящая только из этой бойницы, надежна? б) Докажите, что суммарная длина бойниц любой надёжной системы больше 1/2. в) Докажите, что для любого числа <i>s</i>>1/2 существует надёжная система бойниц с суммарной длиной, меньшей <i>s</i>.
На прямоугольном листе бумаги нарисован круг, внутри которого Миша мысленно выбирает<i>n</i>точек, а Коля пытается их разгадать. За одну попытку Коля указывает на листе (внутри или вне круга) одну точку, а Миша сообщает Коле расстояние от нее до ближайшей неразгаданной точки. Если оно оказывается нулевым, то после этого указанная точка считается разгаданной. Коля умеет отмечать на листе точки, откладывать расстояния и производить построения циркулем и линейкой. Может ли Коля наверняка разгадать все выбранные точки менее, чем за (<i>n</i>+1)<sup>2</sup>попыток?
В выпуклом многограннике обозначим через B, P и T соответственно число вершин, рёбер и максимальное число треугольных граней, которые имеют общую вершину. Докажите, что {$\text{В}\sqrt{\text{Р}+\text{Т}}\geqslant 2\text{Р}$}. Например, для тетраэдра ($\text{В}=4$, $\text{Р}=6$, $\text{Т}=3$) выполняется равенство, а для треугольной призмы ($\text{В}=6$, $\text{Р}=9$, $\text{Т}=1$) или куба ($\text{В}=8$, $\text{Р}=12$, $\text{Т}=0$) имеет место строгое неравенство.
Докажите, что для любого натурального числа $n\geqslant 2$ и для любых действительных чисел $a_1, a_2, \ldots, a_n$, удовлетворяющих условию $a_1+a_2+\ldots+a_n\ne 0$, уравнение \begin{align*} &a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\ \ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0 \end{align*} имеет хотя бы один действительный корень.
На сторонах выпуклого шестиугольника $ABCDEF$ во внешнюю сторону построены правильные треугольники $ABC_1$, $BCD_1$, $CDE_1$, $DEF_1$, $EFA_1$ и $FAB_1$. Оказалось, что треугольник $B_1D_1F_1$ правильный. Докажите, что треугольник $A_1C_1E_1$ также правильный.
На сторонах выпуклого шестиугольника <i>ABCDEF</i> во внешнюю сторону построены равносторонние треугольники <i>ABC</i><sub>1</sub>, <i>BCD</i><sub>1</sub>, <i>CDE</i><sub>1</sub>, <i>DEF</i><sub>1</sub>, <i>EFA</i><sub>1</sub> и <i>FAB</i><sub>1</sub>. Оказалось, что треугольник <i>B</i><sub>1</sub><i>D</i><sub>1</sub><i>F</i><sub>1</sub> – равносторонний. Докажите, что треугольник <i>A</i><sub>1</sub><i>C</i><sub>1</sub><i>E</i><sub>1</sub> также равносторонний.
Поверхность выпуклого многогранника <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>A</i><sub>2</sub><i>B</i><sub>2</sub><i>C</i><sub>2</sub> состоит из восьми треугольных граней <i>A<sub>i</sub>B<sub>j</sub>C<sub>k</sub></i>, где <i>i, j, k</i> меняются от 1 до 2. Сфера с центром в точке <i>O</i> касается всех этих граней. Докажите, что точка <i>O</i> и середины трёх отрезков <i>A</i><sub>1</sub><i>A</i><sub>2</sub>, <i>B</i><sub>1</sub><i>B</i><sub>2</sub&g...