Олимпиадные задачи по математике для 9-10 класса
Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?
Сторону <i>AB</i> треугольника <i>ABC</i> разделили на <i>n</i> равных частей (точки деления <i>B</i><sub>0</sub> = <i>A, B</i><sub>1</sub>, <i>B</i><sub>2</sub>, <i>B<sub>n</sub> = B</i>), а сторону <i>AC</i> этого треугольника разделили на
<i>n</i> + 1 равных частей (точки деления <i>C</i><sub>0</sub> = <i>A, C</i><sub>1</sub>, <i>C</i><sub>2</sub>, ..., <i>C</i><sub><i>n</i>+1</sub> = <i>C</i>). Закрасили треугольники <i>C<sub>i</sub>B<sub>i</sub>C</i><sub><i>...
На основании <i>AD</i> и боковой стороне <i>AB</i> равнобедренной трапеции <i>ABCD</i> взяты точки <i>E, F</i> соответственно так, что <i>CDEF</i> – также равнобедренная трапеция. Докажите, что <i>AE·ED = AF·FB</i>.
Дано натуральное число $N$. Для того чтобы найти целое число, ближайшее к $\sqrt{N}$, воспользуемся следующим способом: найдём среди квадратов натуральных чисел число $a^2$, ближайшее к числу $N$; тогда $a$ и будет искомым числом. Обязательно ли этот способ даст правильный ответ?
Есть шоколадка в форме равностороннего треугольника со стороной <i>n</i>, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого <i>n</i> выясните, кто из играющих может всегда выигрывать, как бы не играл противник?
Придумайте десятизначное число, в записи которого нет нулей, такое что при прибавлении к нему произведения его цифр получается число с таким же произведением цифр.
Докажите, что на графике функции <i>y = x</i>³ можно отметить такую точку <i>A</i>, а на графике функции <i>y = x</i>³ + |<i>x</i>| + 1 – такую точку <i>B</i>, что расстояние <i>AB</i> не превышает <sup>1</sup>/<sub>100</sub>.
Верно ли, что на графике функции <i>y = x</i>³ можно отметить такую точку <i>A</i>, а на графике функции <i>y = x</i>³ + |<i>x</i>| + 1 – такую точку <i>B</i>, что расстояние <i>AB</i> не превысит <sup>1</sup>/<sub>100</sub>?
На сторонах треугольника <i>ABC</i> вовне построены квадраты <i>ABB</i><sub>1</sub><i>A</i><sub>2</sub>, <i>BCC</i><sub>1</sub><i>B</i><sub>2</sub> и <i>CAA</i><sub>1</sub><i>C</i><sub>2</sub>. На отрезках <i>A</i><sub>1</sub><i>A</i><sub>2</sub> и <i>B</i><sub>1</sub><i>B</i><sub>2</sub> также во внешнюю сторону от треугольников <i>AA</i><sub>1</sub><i>A</i><sub>2</sub> и <i>BB</i><sub>1</sub><i>B</i><sub>2</sub> построены квадраты <i>A</...
На прозрачном листе бумаги отмечены три точки.
Докажите, что лист можно согнуть по некоторой прямой так, чтобы эти точки оказались в вершинах равностороннего треугольника.
Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов. <div align="center"><img src="/storage/problem-media/66141/problem_66141_img_2.gif"></div>
Натуральные числа от 1 до 2014 как-то разбили на пары, числа в каждой из пар сложили, а полученные 1007 сумм перемножили.
Мог ли результат оказаться квадратом натурального числа?
На доске записано целое положительное число <i>N</i>. Два игрока ходят по очереди. За ход разрешается либо заменить число на доске на один из его делителей (отличных от единицы и самого числа), либо уменьшить число на единицу (если при этом число остается положительным). Тот, кто не может сделать ход, проигрывает. При каких <i>N</i> первый игрок может выиграть, как бы ни играл соперник?