Олимпиадные задачи по математике для 4-9 класса
Два пирата делили добычу, состоящую из пяти золотых слитков, масса одного из которых 1 кг, а другого – 2 кг. Какую массу могли иметь три других слитка, если известно, что какие бы два слитка ни выбрал себе первый пират, второй пират сможет так разделить оставшиеся слитки, чтобы каждому из них досталось золота поровну?
В равнобедренном треугольнике <i>ABC</i> на основании <i>BC</i> взята точка <i>D</i>, а на боковой стороне <i>AB</i> – точки <i>E</i> и <i>M</i> так, что <i>AM = ME</i> и отрезок <i>DM</i> параллелен стороне <i>AC</i>. Докажите, что <i>AD + DE > AB + BE</i>.
Какое наибольшее значение может принимать выражение <img align="absmiddle" src="/storage/problem-media/115510/problem_115510_img_2.gif"> где <i>a, b, c</i> – попарно различные ненулевые цифры?
Треугольник <i>ABC</i> с острым углом ∠<i>A</i> = α вписан в окружность. Её диаметр, проходящий через основание высоты треугольника, проведённой из вершины <i>B</i>, делит треугольник <i>ABC</i> на две части одинаковой площади. Найдите угол <i>B</i>.
В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.
Женя красила шарообразное яйцо последовательно в пяти красках, погружая его в стакан с очередной краской так, чтобы окрашивалась ровно половина площади поверхности яйца (полсферы). В результате яйцо окрасилось полностью. Докажите, что одна из красок была лишней, то есть если бы Женя не использовала эту краску, а в другие краски погружала бы яйцо так же, то оно всё равно окрасилось бы полностью.
Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$
В доме из $2^n$ комнат сделали евроремонт. При этом выключатели света оказались перепутанными, так что при включении выключателя в одной комнате загорается лампочка, вообще говоря, в какой-то другой комнате. Чтобы узнать, какой выключатель к какой комнате подсоединён, прораб посылает несколько людей в какие-то комнаты, чтобы те, одновременно включив там выключатели, вернулись и сообщили ему, горела лампочка в их комнате или нет. а) Докажите, что за $2n$ таких посылок прораб может установить соответствие между выключателями и комнатами. б) А может ли он обойтись $2n-1$ такими посылками?
Существуют ли такое натуральное $n$ и такой многочлен $P(x)$ степени $n$, имеющий $n$ различных действительных корней, что при всех действительных $x$ выполнено равенство а) $P(x)P(x+1)=P(x^2)$; б) $P(x)P(x+1)=P(x^2+1)$?
Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?