Олимпиадные задачи по математике для 11 класса - сложность 1 с решениями

Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?

Найдите все пары  (<i>p, q</i>)  простых чисел, разность пятых степеней которых также является простым числом.

В трапеции <i>ABCD</i>  (<i>AD || BC</i>)  из точки <i>Е</i> – середины <i>CD</i> провели перпендикуляр <i>EF</i> к прямой <i>AB</i>. Найдите площадь трапеции, если  <i>АВ</i> = 5,  <i>EF</i> = 4.

Внутри параллелограмма <i>ABCD</i> выбрана произвольная точка <i>Р</i> и проведены отрезки <i>РА</i>, <i>РВ</i>, <i>РС</i> и <i>PD</i>. Площади трёх из образовавшихся треугольников равны 1, 2 и 3 (в каком-то порядке). Какие значения может принимать площадь четвёртого треугольника?

Решите неравенство:   <img align="absmiddle" src="/storage/problem-media/116430/problem_116430_img_2.gif">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка