Олимпиадные задачи по математике для 11 класса - сложность 1-3 с решениями
Через вершину <i>А</i> остроугольного треугольника <i>АВС</i> проведены касательная <i>АК</i> к его описанной окружности, а также биссектрисы <i>АN</i> и <i>AM</i> внутреннего и внешнего углов при вершине <i>А</i> (точки <i>М, K</i> и <i>N</i> лежат на прямой <i>ВС</i>). Докажите, что <i>MK = KN</i>.
Дан остроугольный треугольник <i>ABC</i>. Прямая, параллельная <i>BC</i>, пересекает стороны <i>AB</i> и <i>AC</i> в точках <i>M</i> и <i>P</i> соответственно. При каком расположении точек <i>M</i> и <i>P</i> радиус окружности, описанной около треугольника <i>BMP</i>, будет наименьшим?
В окружность вписан прямоугольный треугольник <i>ABC</i> с гипотенузой <i>AB</i>. Пусть <i>K</i> – середина дуги <i>BC</i>, не содержащей точку <i>A, N</i> – середина отрезка <i>AC, M</i> – точка пересечения луча <i>KN</i> с окружностью. В точках <i>A</i> и <i>C</i> проведены касательные к окружности, которые пересекаются в точке <i>E</i>. Докажите, что
∠<i>EMK</i> = 90°.
Внутренняя точка <i>M</i> выпуклого четырёхугольника <i>ABCD</i> такова, что треугольники <i>AMB</i> и <i>CMD</i> – равнобедренные с углом величиной 120° при вершине <i>M</i>.
Докажите существование такой точки <i>N</i>, что треугольники <i>BNC</i> и <i>DNA</i> – правильные.
В треугольнике <i>ABC</i> проведены высота <i>AH</i> и биссектриса <i>BE</i>. Известно, что угол <i>BEA</i> равен 45°. Докажите, что угол <i>EHC</i> равен 45°.
Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.
Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь этого сечения меньше половины площади грани куба.
В тетраэдре <i>DABC</i> ∠<i>ACB</i> = ∠<i>ADB</i>, ребро <i>СD</i> перпендикулярно плоскости <i>АВС</i>. В треугольнике <i>АВС</i> дана высота <i>h</i>, проведённая к стороне <i>АВ</i>, и расстояние <i>d</i> от центра описанной окружности до этой стороны. Найдите <i>CD</i>.