Олимпиадные задачи по математике для 9 класса - сложность 4-5 с решениями

Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:

  а) по 5 шахматистов;

  б) произвольное равное число шахматистов.

Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причём нельзя называть то, что уже было сказано. Результат теста – число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать.

  а) Могут ли они гарантировать результат более 500?

  б) Могут ли они гарантировать результат не менее 999?

Дано целое число  <i>n</i> > 1.  Двое игроков по очереди отмечают точки на окружности: первый – красным цветом, второй – синим (отмечать одну и ту же точку дважды нельзя). Когда отмечено по <i>n</i> точек каждого цвета, игра заканчивается. После этого каждый игрок находит на окружности дугу наибольшей длины с концами своего цвета, на которой больше нет отмеченных точек. Игрок, у которого найденная длина больше, выиграл (в случае равенства длин дуг, а также при отсутствии таких дуг у обоих игроков – ничья). Кто из играющих может всегда выигрывать, как бы ни играл противник?

Натуральные числа покрашены в <i>N</i> цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.

  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.

  б) При каких <i>N</i> такая раскраска возможна?

Ювелир сделал незамкнутую цепочку из<i> N></i>3пронумерованных звеньев. Капризная заказчица потребовала изменить порядок звеньев в цепочке. Из вредности она заказала такую незамкнутую цепочку, чтобы ювелиру пришлось раскрыть как можно больше звеньев. Сколько звеньев придется раскрыть?

Назовём <i>лабиринтом</i> шахматную доску 8×8, на которой между некоторыми полями поставлены перегородки. По команде <b>ВПРАВО</b> ладья смещается на одно поле вправо или, если справа находится край доски или перегородка, остаётся на месте; аналогично выполняются команды <b>ВЛЕВО, ВВЕРХ</b> и <b>ВНИЗ</b>. Программист пишет программу – конечную последовательность указанных команд, и даёт её пользователю, после чего пользователь выбирает лабиринт и помещает в него ладью на любое поле. Верно ли, что программист может написать такую программу, что ладья обойдёт все доступные поля в лабиринте при любом выборе пользователя?

В прямоугольную коробку с основанием <i>m</i>×<i>n</i>, где <i>m</i> и <i>n</i> – нечётные числа, уложены домино размера 2×1 так, что остался не покрыт только квадрат 1×1 (дырка) в углу коробки. Если доминошка прилегает к дырке короткой стороной, её разрешается сдвинуть вдоль себя на одну клетку, закрыв дырку (при этом открывается новая дырка). Докажите, что с помощью таких передвижений можно перегнать дырку в любой другой угол.

Существует ли последовательность натуральных чисел, в которой каждое натуральное число встречается ровно один раз и при этом для любого  <i>k</i> = 1, 2, 3, ...  сумма первых <i>k</i> членов последовательности делится на <i>k</i>?

Скажем, что колода из 52 карт сложена правильно, если каждая пара лежащих рядом карт совпадает по масти или достоинству, то же верно для верхней и нижней карты, и наверху лежит туз пик. Докажите, что число способов сложить колоду правильно

  а) делится на 12!;

  б) делится на 13!.

У ведущего есть колода из 52 карт. Зрители хотят узнать, в каком порядке лежат карты (при этом не уточняя   сверху вниз или снизу вверх). Разрешается задавать ведущему вопросы вида "Сколько карт лежит между такой-то и такой-то картами?". Один из зрителей подсмотрел, в каком порядке лежат карты. Какое наименьшее число вопросов он должен задать, чтобы остальные зрители по ответам на эти вопросы могли узнать порядок карт в колоде?

Банкир узнал, что среди одинаковых на вид монет одна — фальшивая (более легкая). Он попросил эксперта определить эту монету с помощью чашечных весов без гирь, причем потребовал, чтобы каждая монета участвовала во взвешиваниях не более двух раз. Какое наибольшее число монет может быть у банкира, чтобы эксперт заведомо смог выделить фальшивую за<i>n</i>взвешиваний?

На плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)

Петя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).

У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?

Из колоды вынули семь карт, показали всем, перетасовали и раздали Грише и Лёше по три карты, а оставшуюся карту

  а) спрятали;

  б) отдали Коле.

Гриша и Лёша могут по очереди сообщать вслух любую информацию о своих картах. Могут ли они сообщить друг другу свои карты так, чтобы при этом Коля не смог вычислить местонахождение ни одной из тех карт, которых он не видит? (Гриша и Лёша не договаривались о каком-либо особом способе общения; все переговоры происходят <i>открытым текстом</i>.)

Из имеющихся последовательностей {<i>b<sub>n</sub></i>} и {<i>c<sub>n</sub></i>} (возможно, {<i>b<sub>n</sub></i>} совпадает с {<i>c<sub>n</sub></i>})  разрешается получать последовательности  {<i>b<sub>n</sub> + c<sub>n</sub></i>},

{<i>b<sub>n</sub> – c<sub>n</sub></i>},  {<i>b<sub>n</sub>c<sub>n</sub></i>}  и  {<sup><i>b<sub>n</sub></i></sup>/<sub><i>c<sub>n</sub></i></sub>}  (если все члены последовательности {<i>c<sub>n</sub></i>} отличны от 0). Кроме того, из любой имеющейся последователь...

Система укреплений состоит из блиндажей. Некоторые из блиндажей соединены траншеями, причём из каждого блиндажа можно перебежать в какой-нибудь другой. В одном из блиндажей спрятался пехотинец. Пушка может одним выстрелом накрыть любой блиндаж. В каждом промежутке между выстрелами пехотинец обязательно перебегает по одной из траншей в соседний блиндаж (даже если по соседнему блиндажу только что стреляла пушка, пехотинец может туда перебежать). Назовём систему <i>надёжной</i>, если у пушки нет гарантированной стратегии поражения пехотинца (то есть такой последовательности выстрелов, благодаря которой пушка поразит пехотинца независимо от его начального местонахождения и последующих передвижений). <div align="center"><img src="/storage/problem-media/1050...

Ладья, делая ходы по вертикали и горизонтали на соседнее поле, за 64 хода обошла все поля шахматной доски 8×8 и вернулась на исходное поле. Докажите, что число ходов по вертикали не равно числу ходов по горизонтали.

За круглым столом сидят десять человек, перед каждым – несколько орехов. Всего орехов – сто. По общему сигналу каждый передаёт часть своих орехов соседу справа: половину, если у него (у того, кто передаёт) было чётное число, или один орех плюс половину остатка – если нечётное число. Такая операция проделывается второй раз, затем третий и так далее, до бесконечности. Докажите, что через некоторое время у всех станет по десять орехов.

Имеется набор гирь, веса которых в граммах: 1, 2, 4,... , 512 (последовательные степени двойки) – по одной гире каждого веса. Груз разрешается взвешивать с помощью этого набора, кладя гири на обе чашки весов.

  а) Докажите, что никакой груз нельзя взвесить этими гирями более чем 89 способами.

  б) Приведите пример груза, который можно взвесить ровно 89 способами.

В бесконечной арифметической прогрессии, где все числа натуральные, нашлись два числа с одинаковой суммой цифр. Обязательно ли в ней найдётся ещё одно число с такой же суммой цифр?

Петя прибавил к натуральному числу $N$ натуральное число $M$ и заметил, что сумма цифр у результата та же, что и у $N$. Тогда он снова прибавил $M$ к результату, потом – ещё раз, и т. д. Обязательно ли он когда-нибудь снова получит число с той же суммой цифр, что и у $N$?

Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.

Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка