Олимпиадные задачи по математике для 1-9 класса

Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника, принадлежащую только одному параллелограмму, назовем хорошей. Докажите, что хороших вершин не менее трех.

Куб <i>n</i>×<i>n</i>×<i>n</i> сложен из единичных кубиков. Дана замкнутая несамопересекающаяся ломаная, каждое звено которой соединяет центры двух соседних (имеющих общую грань) кубиков. Назовём <i>отмёченными</i> грани кубиков, пересекаемые данной ломаной. Докажите, что рёбра кубиков можно окрасить в два цвета так, чтобы каждая отмеченная грань имела нечётное число, а всякая неотмеченная грань – чётное число сторон каждого цвета.

Дан выпуклый многоугольник, никакие две стороны которого не параллельны. Для каждой из его сторон рассмотрим угол, под которым она видна из вершины, наиболее удалённой от прямой, содержащей эту сторону. Докажите, что сумма всех таких углов равна 180°.

Трапеция <i>ABCD</i> такова, что на её боковых сторонах <i>AD</i> и <i>BC</i> существуют такие точки <i>P</i> и <i>Q</i> соответственно, что  ∠<i>APB</i> = ∠<i>CPD</i>,  ∠<i>AQB</i> = ∠<i>CQD</i>.

Докажите, что точки <i>P</i> и <i>Q</i> равноудалены от точки пересечения диагоналей трапеции.

На стороне<i> BC </i>выпуклого четырёхугольника<i> ABCD </i>взяты точки<i> E </i>и<i> F </i>(точка<i> E </i>ближе к точке<i> B </i>, чем точка<i> F </i>). Известно, что<i> <img src="/storage/problem-media/108185/problem_108185_img_2.gif"> BAE = <img src="/storage/problem-media/108185/problem_108185_img_2.gif"> CDF </i>и<i> <img src="/storage/problem-media/108185/problem_108185_img_2.gif"> EAF = <img src="/storage/problem-media/108185/problem_108185_img_2.gif"> FDE </i>. Докажите, что<i> <img src="/storage/problem-media/108185/problem_108185_img_2.gif"> FAC = <img src="/storage/problem-medi...

Диагонали параллелограмма <i>ABCD</i> пересекаются в точке <i>O</i>. Точка <i>M</i> лежит на прямой <i>AB</i>, причём  ∠<i>AMO</i> = ∠<i>MAD</i>.

Докажите, что точка <i>M</i> равноудалена от точек <i>C</i> и <i>D</i>.

На стороне <i>AB</i> параллелограмма <i>ABCD</i> (или на её продолжении) взята точка <i>M</i>, для которой  ∠<i>MAD</i> = ∠<i>AMO</i>,  где <i>O</i> – точка пересечения диагоналей параллелограмма. Докажите, что  <i>MD = MC</i>.

На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.

Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.

Докажите, что не существует никакой (даже разрывной) функции  <i>y = f</i>(<i>x</i>),  для которой  <i>f</i>(<i>f</i>(<i>x</i>)) = <i>x</i>² – 1996  при всех <i>x</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка