Олимпиадные задачи по математике для 10 класса
Можно ли отметить на числовой оси 50 отрезков (быть может, перекрывающихся) так, что их длины – 1, 2, 3, ... , 50, а их концы – все целые точки от 1 до 100 включительно?
Можно ли подобрать два многочлена <i>P</i>(<i>x</i>) и <i>Q</i>(<i>x</i>) с целыми коэффициентами так, что <i>P – Q</i>, <i>P</i> и <i>P + Q</i> – квадраты некоторых многочленов (причём <i>Q</i> не получается умножением <i>P</i> на число)?
Правильный шестиугольник разрезан на <i>N</i> равновеликих параллелограммов. Доказать, что <i>N</i> делится на 3.
а) Из произвольной точки <i>M</i> внутри правильного <i>n</i>-угольника проведены перпендикуляры <i>MK</i><sub>1</sub>, <i>MK</i><sub>2</sub>, ..., <i>MK<sub>n</sub></i> к его сторонам (или их продолжениям). Докажите, что <img align="absmiddle" src="/storage/problem-media/97793/problem_97793_img_2.gif"> (<i>O</i> – центр <i>n</i>-угольника). б) Докажите, что сумма векторов, проведённых из любой точки <i>M</i> внутри правильного тетраэдра перпендикулярно к его граням, равна <img align="absmiddle" src="/storage/problem-media/97793/problem_97793_img_3.gif"> где <i>O</i> – центр тетраэдра....
<i>M</i> – множество точек на плоскости. Точка <i>O</i> называется "почти центром симметрии" множества <i>M</i>, если из <i>M</i> можно выбросить одну точку так, что для оставшегося множества <i>O</i> является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости?
Дано число<i>x</i>, большее 1. Обязательно ли имеет место равенство<div align="CENTER"> [$\displaystyle \sqrt{[\sqrt{x}]}$] = [$\displaystyle \sqrt{\sqrt{x}}$]? </div>