Олимпиадные задачи по математике для 10-11 класса

Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.

Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.

Даны полуокружность с диаметром <i>AB</i> и центром <i>O</i> и прямая, пересекающая полуокружность в точках <i>C</i> и <i>D</i>, а прямую <i>AB</i> – в точке <i>M</i>  (<i>MB < MA,

MD < MC</i>).  Пусть <i>K</i> – отличная от <i>O</i> точка пересечения описанных окружностей треугольников <i>AOC</i> и <i>DOB</i>. Докажите, что угол <i>MKO</i> – прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка