Олимпиадные задачи по математике - сложность 4 с решениями
Можно ли расположить в пространстве 12 прямоугольных параллелепипедов<i> P<sub>1</sub> </i>,<i> P<sub>2</sub> </i>,<i> P</i>12, ребра которых параллельны координатным осям<i> Ox </i>,<i> Oy </i>,<i> Oz </i>так, чтобы<i> P<sub>2</sub> </i>пересекался (т.е. имел хотя бы одну общую точку) с каждым из оставшихся, кроме<i> P<sub>1</sub> </i>и<i> P<sub>3</sub> </i>,<i> P<sub>3</sub> </i>пересекался с каждым из оставшихся, кроме<i> P<sub>2</sub> </i>и<i> P<sub>4</sub> </i>, и т.д.,<i> P</i>12пересекался с каждым из оставшихся, кроме<i> P</i...
В остроугольном треугольнике проведены высоты <i>AA'</i> и <i>BB'</i>. На дуге <i>ACB</i> описанной окружности треугольника <i>ABC</i> выбрана точка <i>D</i>. Пусть прямые <i>AA'</i> и <i>BD</i> пересекаются в точке <i>P</i>, а прямые <i>BB'</i> и <i>AD</i> пересекаются в точке <i>Q</i>. Докажите, что прямая <i>A'B'</i> проходит через середину отрезка <i>PQ</i>.
а) Из картона вырезали 7 выпуклых многоугольников и положили на стол так, что любые 6 из них можно прибить к столу двумя гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.) б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)
Окружность, проходящая через вершины $B$ и $D$ четырехугольника $ABCD$, пересекает его стороны $AB$, $BC$, $CD$ и $DA$ в точках $K$, $L$, $M$ и $N$ соответственно. Окружность, проходящая через точки $K$ и $M$, пересекает прямую $AC$ в точках $P$ и $Q$. Докажите, что точки $L$, $N$, $P$ и $Q$ лежат на одной окружности.
На плоскости дано <i>n</i> выпуклых попарно пересекающихся <i>k</i>-угольников. Каждый из них можно перевести в любой другой гомотетией с положительным коэффициентом. Докажите, что на плоскости найдётся точка, принадлежащая хотя бы <img align="absmiddle" src="/storage/problem-media/64776/problem_64776_img_2.gif"> из этих <i>k</i>-угольников.
Через середину <i>C</i> произвольной хорды <i>AB</i> окружности проведены две хорды <i>KL</i> и <i>MN</i> (точки <i>K</i> и <i>M</i> лежат по одну сторону от <i>AB</i>). Отрезок <i>KN</i> пересекает <i>AB</i> в точке <i>P</i>. Отрезок <i>LM</i> пересекает <i>AB</i> в точке <i>Q</i>. Докажите, что <i>PC = QC</i>. <small>Также доступны документы в формате <a href="https://problems.ru/images/problem_52460_img_6.gif">TeX</a></small>
Длина каждой стороны и каждой не главной диагонали выпуклого шестиугольника не превосходит 1. Докажите, что в этом шестиугольнике найдется главная диагональ, длина которой не превосходит <img src="/storage/problem-media/37000/problem_37000_img_2.gif" align="middle">.