Олимпиадные задачи из источника «2013-2014» для 2-8 класса - сложность 1-2 с решениями

К натуральному числу <i>N</i> прибавили наибольший его делитель, меньший <i>N</i>, и получили степень десятки. Найдите все такие <i>N</i>.

По кругу расставлены 99 натуральных чисел. Известно, что каждые два соседних числа отличаются или на 1, или на 2, или в два раза.

Докажите, что хотя бы одно из этих чисел делится на 3.

Число <i>x</i> таково, что среди четырёх чисел   <img align="absmiddle" src="/storage/problem-media/64622/problem_64622_img_2.gif">   ровно одно не является целым.

Найдите все такие <i>x</i>.

Учитель записал Пете в тетрадь четыре различных натуральных числа. Для каждой пары этих чисел Петя нашёл их наибольший общий делитель. У него получились шесть чисел: 1, 2, 3, 4, 5 и <i>N</i>, где  <i>N</i> > 5.  Какое наименьшее значение может иметь число <i>N</i>?

В четырёхугольнике <i>ABCD</i> стороны <i>AD</i> и <i>BC</i> параллельны.

Докажите, что если биссектрисы углов <i>DAC, DBC, ACB</i> и <i>ADB</i> образовали ромб, то  <i>AB = CD</i>.

Даны 111 различных натуральных чисел, не превосходящих 500.

Могло ли оказаться, что для каждого из этих чисел его последняя цифра совпадает с последней цифрой суммы всех остальных чисел?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка