Олимпиадные задачи из источника «2010-2011» для 10 класса - сложность 2 с решениями

Даны два различных приведённых кубических многочлена <i>F</i>(<i>x</i>) и <i>G</i>(<i>x</i>). Выписали все корни уравнений  <i>F</i>(<i>x</i>) = 0,  <i>G</i>(<i>x</i>) = 0,  <i>F</i>(<i>x</i>) = <i>G</i>(<i>x</i>). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена <i>F</i>(<i>x</i>).

Натуральные числа <i>d</i> и  <i>d' > d</i>  – делители натурального числа <i>n</i>. Докажите, что  <i>d' > d</i> + <sup><i>d</i>²</sup>/<sub><i>n</i></sub>.

Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

На доске написаны девять приведённых квадратных трёхчленов:  <i>x</i>² + <i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>,  <i>x</i>² + <i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>,  ...,  <i>x</i>² + <i>a</i><sub>9</sub><i>x + b</i><sub>9</sub>. Известно, что последовательности  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>9</sub>  и  <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b</i><sub>9</sub>  – арифметические прогрессии. Оказалось, что сумма все...

Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.

Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?

Приведённый квадратный трёхчлен <i>P</i>(<i>x</i>) таков, что многочлены <i>P</i>(<i>x</i>) и <i>P</i>(<i>P</i>(<i>P</i>(<i>x</i>))) имеют общий корень. Докажите, что  <i>P</i>(0)<i>P</i>(1) = 0.

Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.

В неравнобедренном остроугольном треугольнике <i>ABC</i> точки <i>C</i><sub>0</sub> и <i>B</i><sub>0</sub> – середины сторон <i>AB</i> и <i>AC</i> соответственно, <i>O</i> – центр описанной окружности, <i>H</i> – точка пересечения высот. Прямые <i>BH</i> и <i>OC</i><sub>0</sub> пересекаются в точке <i>P</i>, а прямые <i>CH</i> и <i>OB</i><sub>0</sub> – в точке <i>Q</i>. Оказалось, что четырёхугольник <i>OPHQ</i> – ромб. Докажите, что точки <i>A, P</i> и <i>Q</i> лежат на одной прямой.

Найдите все такие числа <i>a</i>, что для любого натурального <i>n</i> число  <i>an</i>(<i>n</i> + 2)(<i>n</i> + 3)(<i>n</i> + 4)  будет целым.

Даны различные натуральные числа  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>14</sub>.  На доску выписаны все 196 чисел вида  <i>a<sub>k</sub></i> + <i>a<sub>l</sub></i>,  где  1 ≤ <i>k</i>, <i>l</i> ≤ 14.  Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?

На стороне <i>AC</i> остроугольного треугольника <i>ABC</i> выбраны точки <i>M</i> и <i>K</i> так, что ∠<i>ABM</i> = ∠<i>CBK</i>.

Докажите, что центры описанных окружностей треугольников <i>ABM, ABK, CBM</i> и <i>CBK</i> лежат на одной окружности.

Два бегуна стартовали одновременно из одной точки. Сначала они бежали по улице до стадиона, а потом до финиша – три круга по стадиону. Всю дистанцию оба бежали с постоянными скоростями, и в ходе забега первый бегун дважды обогнал второго. Докажите, что первый бежал по крайней мере вдвое быстрее, чем второй.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка