Олимпиадные задачи из источника «Региональный этап» для 8 класса - сложность 2-4 с решениями
300 бюрократов разбиты на три комиссии по 100 человек. Каждые два бюрократа либо знакомы друг с другом, либо незнакомы. Докажите, что найдутся два таких бюрократа из разных комиссий, что в третьей комиссии есть либо 17 человек, знакомых с обоими, либо 17 человек, незнакомых с обоими.
Дан треугольник <i>ABC</i>, в котором <i>AB > BC</i>. Касательная к его описанной окружности в точке <i>B</i> пересекает прямую <i>AC</i> в точке <i>P</i>. Точка <i>D</i> симметрична точке <i>B</i> относительно точки <i>P</i>, а точка <i>E</i> симметрична точке <i>C</i> относительно прямой <i>BP</i>. Докажите, что четырёхугольник <i>ABED</i> – вписанный.
Дан квадратный трёхчлен <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>. Известно, что для любого вещественного <i>x</i> существует такое вещественное <i>y</i>, что <i>f</i>(<i>y</i>) = <i>f</i>(<i>x</i>) + <i>y</i>. Найдите наибольшее возможное значение <i>a</i>.
Дано натуральное число <i>n</i> > 1. Для каждого делителя <i>d</i> числа <i>n</i> + 1, Петя разделил число <i>n</i> на <i>d</i> с остатком и записал на доску неполное частное, а в тетрадь – остаток. Докажите, что наборы чисел на доске и в тетради совпадают.
В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.
Числа <i>a, b, c</i> таковы, что <i>a</i>²(<i>b + c</i>) = <i>b</i>²(<i>a + c</i>) = 2008 и <i>a ≠ b</i>. Найдите значение выражения <i>c</i>²(<i>a + b</i>).
На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?
По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю.
На острове живут100рыцарей и100лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно100человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.
В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета.
На сторонах <i>AB</i> и <i>AC</i> треугольника <i>ABC</i> нашлись такие точки <i>M</i> и <i>N</i>, отличные от вершин, что <i>MC = AC</i> и <i>NB = AB</i>. Точка <i>P</i> симметрична точке <i>A</i> относительно прямой <i>BC</i>. Докажите, что <i>PA</i> является биссектрисой угла <i>MPN</i>.
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.