Олимпиадные задачи из источника «2005-2006» - сложность 5 с решениями

У выпуклого многогранника2<i>n </i>граней (<i> n<img src="/storage/problem-media/110213/problem_110213_img_2.gif"> </i>3), и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?

Окружность<i> σ </i>касается равных сторон<i> AB </i>и<i> AC </i>равнобедренного треугольника<i> ABC </i>и пересекает сторону<i> BC </i>в точках<i> K </i>и<i> L </i>. Отрезок<i> AK </i>пересекает<i> σ </i>второй раз в точке<i> M </i>. Точки<i> P </i>и<i> Q </i>симметричны точке<i> K </i>относительно точек<i> B </i>и<i> C </i>соответственно. Докажите, что описанная окружность треугольника<i> PMQ </i>касается окружности<i> σ </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка