Олимпиадные задачи из источника «Региональный этап» - сложность 4-5 с решениями

У выпуклого многогранника2<i>n </i>граней (<i> n<img src="/storage/problem-media/110213/problem_110213_img_2.gif"> </i>3), и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?

Какое минимальное количество клеток можно закрасить черным в белом квадрате 300×300, чтобы никакие три черные клетки не образовывали уголок, а после закрашивания любой белой клетки это условие нарушалось?

Докажите, что если натуральное число <i>N</i> представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка