Олимпиадные задачи из источника «Региональный этап» для 11 класса - сложность 2-5 с решениями
В некотором государстве было 2004 города, соединённых дорогами так, что из каждого города можно было добраться до любого другого. Известно, что при запрещённом проезде по любой из дорог по-прежнему из каждого города можно было добраться до любого другого. Министр транспорта и министр внутренних дел по очереди вводят на дорогах, пока есть возможность, одностороннее движение (на одной дороге за ход), причём министр, после хода которого из какого-либо города стало невозможно добраться до какого-либо другого, немедленно уходит в отставку. Первым ходит министр транспорта.
Может ли кто-либо из министров добиться отставки другого независимо от его игры?
Мишень "бегущий кабан" находится в одном из<i> n </i>окошек, расположенных в ряд. Окошки закрыты занавесками так, что для стрелка мишень все время остается невидимой. Чтобы поразить мишень, достаточно выстрелить в окошко, в котором она в момент выстрела находится. Если мишень находится не в самом правом окошке, то сразу после выстрела она перемещается на одно окошко вправо; из самого правого окошка мишень никуда не перемещается. Какое наименьшее число выстрелов нужно сделать, чтобы наверняка поразить мишень?
Положительные числа <i>x, y, z</i> таковы, что модуль разности любых двух из них меньше 2.
Докажите, что  <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_2.gif"> + <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_3.gif"> + <img align="absmiddle" src="/storage/problem-media/110162/problem_110162_img_4.gif"> > <i>x + y + z</i>.
В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?
Окружности<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>пересекаются в точках<i> A </i>и<i> B </i>. В точке<i> A </i>к<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>проведены соответственно касательные<i> l<sub>1</sub> </i>и<i> l<sub>2</sub> </i>. Точки<i> T<sub>1</sub> </i>и<i> T<sub>2</sub> </i>выбраны соответственно на окружностях<i> σ <sub>1</sub> </i>и<i> σ <sub>2</sub> </i>так, что угловые меры дуг<i> T<sub>1</sub>A </i>и<i> AT<sub>2</sub> </i>равны (величина дуги...
Уравнение <i>x<sup>n</sup> + a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub><i>n</i>–1</sub><i>x + a<sub>n</sub></i> = 0 с целыми ненулевыми коэффициентами имеет <i>n</i> различных целых корней.
Докажите, что если каждые два корня взаимно просты, то и числа <i>a</i><sub><i>n</i>–1</sub> и <i>a<sub>n</sub></i> взаимно просты.
На плоскости отмечено<i> N<img src="/storage/problem-media/110154/problem_110154_img_2.gif"> </i>3различных точек. Известно, что среди попарных расстояний между отмеченными точками встречаются не более<i> n </i>различных расстояний. Докажите, что<i> N<img src="/storage/problem-media/110154/problem_110154_img_3.gif"> </i>(<i>n+</i>1)<i><sup>2</sup> </i>.
Сумма положительных чисел <i>a, b, c</i> равна <sup>π</sup>/<sub>2</sub>. Докажите, что cos <i>a</i> + cos <i>b</i> + cos <i>c</i> > sin <i>a</i> + sin <i>b</i> + sin <i>c</i>.
Дана треугольная пирамида<i> ABCD </i>. Сфера<i> S<sub>1</sub> </i>, проходящая через точки<i> A </i>,<i> B </i>,<i> C </i>, пересекает ребра<i> AD </i>,<i> BD </i>,<i> CD </i>в точках<i> K </i>,<i> L </i>,<i> M </i>соответственно; сфера<i> S<sub>2</sub> </i>, проходящая через точки<i> A </i>,<i> B </i>,<i> D </i>, пересекает ребра<i> AC </i>,<i> BC </i>,<i> DC </i>в точках<i> P </i>,<i> Q </i>,<i> M </i>соответственно. Оказалось, что<i> KL|| PQ </i>. Докажите, что биссектрисы плоских углов<i> KMQ <...
При каких натуральных<i> n </i>для любых чисел<i> α </i>,<i> β </i>,<i> γ </i>, являющихся величинами углов остроугольного треугольника, справедливо неравенство <center><i>
sin nα + sin nβ + sin nγ<</i>0<i>? </i></center>
Расстоянием между числами <span style="text-decoration: overline;"><i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub><i>a</i><sub>4</sub><i>a</i><sub>5</sub></span> и <span style="text-decoration: overline;"><i>b</i><sub>1</sub><i>b</i><sub>2</sub><i>b</i><sub>3</sub><i>b</i><sub>4</sub><i>b</i><sub>5</sub></span> назовём максимальное <i>i</i>, для которого <i>a<sub>i</sub></i> ≠ <i>b<sub>i</sub></i>. Все пятизначные числа выписаны друг...
Пусть многочлен <i>P</i>(<i>x</i>) = <i>a<sub>n</sub>x<sup>n</sup> + a</i><sub><i>n</i>–1</sub><i>x</i><sup><i>n</i>–1</sup> + ... + <i>a</i><sub>0</sub> имеет хотя бы один действительный корень и <i>a</i><sub>0</sub> ≠ 0. Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи <i>P</i>(<i>x</i>), можно получить из него число <i>a</i><sub>0</sub> так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.
В языке жителей Банановой Республики количество слов превышает количество букв в их алфавите. Докажите, что найдется такое натуральное<i> k </i>, для которого можно выбрать<i> k </i>различных слов, в записи которых используется ровно<i> k </i>различных букв.
Внутри параллелограмма <i>ABCD</i> выбрана точка <i>M</i>, а внутри треугольника <i>AMD</i> точка <i>N</i>, причём ∠<i>MNA</i> + ∠<i> MCB</i> = ∠<i>MND</i> + ∠<i>MBC</i> = 180°.
Докажите, что прямые <i>MN</i> и <i>AB</i> параллельны.