Олимпиадные задачи из источника «Региональный этап» - сложность 4 с решениями
Для некоторого многочлена существует бесконечное множество его значений, каждое из которых многочлен принимает по крайней мере в двух целочисленных точках. Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.
Многогранник описан около сферы. Назовем его грань большой, если проекция сферы на плоскость грани целиком попадает в грань. Докажите, что больших граней не больше 6.