Олимпиадные задачи из источника «10 (1987)» для 10-11 класса - сложность 1-3 с решениями
10 (1987)
НазадДокажите, что существует число, сумма цифр квадрата которого более, чем в 1000 раз превышает сумму цифр самого числа.
Какое максимальное число ладей можно расставить в кубе 8×8×8, чтобы они не били друг друга?
Известно, что некоторый многочлен в рациональных точках принимает рациональные значения.
Докажите, что все его коэффициенты рациональны.
В центре квадратного пруда плавает ученик. Внезапно к вершине квадрата подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?
Брат и сестра делят треугольный торт так: он указывает точку на торте, а она проводит через эту точку прямолинейный разрез и выбирает себе кусок. Каждый хочет получить кусок как можно больше. Где брат должен поставить точку? Какую часть торта получит в этом случае каждый из них?
На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках?
На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что существует неостроугольный треугольник с вершинами в этих точках.