Олимпиадные задачи из источника «6 турнир (1984/1985 год)» для 3-7 класса - сложность 2 с решениями

Даны три действительных числа: <i>a, b</i> и <i>c</i>. Известно, что  <i>a + b + c</i> > 0,  <i>ab + bc + ca</i> > 0,  <i>abc</i> > 0.  Докажите, что  <i>a</i> > 0,  <i>b</i> > 0  и  <i>c</i> > 0.

Из чисел  1, 2, 3, ..., 1985  выбрать наибольшее количество чисел так, чтобы разность любых двух выбранных чисел не была простым числом.

<img align="right" src="/storage/problem-media/97867/problem_97867_img_2.gif">Квадрат разбит на пять прямоугольников так, что четыре угла квадрата являются углами четырёх прямоугольников, площади которых равны между собой, а пятый прямоугольник не имеет общих точек со сторонами квадрата. Докажите, что этот пятый прямоугольник есть квадрат.

Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456?

На прямой сидят три кузнечика, каждую секунду прыгает один кузнечик. Он прыгает через какого-нибудь кузнечика (но не через двух сразу).

Докажите, что через 1985 секунд они не могут вернуться в исходное положение.

Имеется 68 монет, причём известно, что любые две монеты различаются по весу.

За 100 взвешиваний на двухчашечных весах без гирь найти самую тяжелую и самую лёгкую монеты.

На фестивале камерной музыки собралось шесть музыкантов. На каждом концерте часть музыкантов выступает, а остальные слушают их из зала. За какое наименьшее число концертов каждый из шести музыкантов сможет послушать (из зала) всех остальных?

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной <i>b</i>, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке <i>A</i>? (Стороны квадрата – тоже улицы).

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка