Олимпиадные задачи из источника «5 турнир (1983/1984 год)» - сложность 4 с решениями
Для каждого натурального <i>n</i> обозначим через <i>P</i>(<i>n</i>) число разбиений <i>n</i> в сумму натуральных слагаемых (разбиения, отличающиеся лишь порядком слагаемых, считаются одинаковыми; например, <i>P</i>(4) = 5, потому что 4 = 4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1 – пять способов).
а) Количество различных чисел в данном разбиении назовем его <i>разбросом</i> (например, разбиение 4 = 1 + 1 + 2 имеет разброс 2, потому что в этом разбиении два различных числа). Докажите, что сумма <i>Q</i>(<i>n</i>) разбросов всех разбиений числа <i>n</i> равна 1 + <i>P</i>(1) + <i>P</i>(2) + ... + <i>P</i>(<i>n</i>–1)....
По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (<i>k</i>-й и (<i>k</i>+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (<i>k</i>–1)-ю и (<i>k</i>+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)
На бесконечной во все стороны шахматной доске выделено некоторое множество клеток <i>A</i>. На всех клетках доски, кроме множества <i>A</i>, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое <i>k</i> и такой способ движения королей, что после <i>k</i> ходов вся доска будет заполнена королями? Рассмотрите варианты:
а) <i>A</i> есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная...