Олимпиадные задачи из источника «весенний тур, базовый вариант, 8-9 классы» - сложность 2 с решениями
весенний тур, базовый вариант, 8-9 классы
НазадДаны три натуральных числа. Каждое из них делится на наибольший общий делитель остальных двух. Наименьшее общее кратное каждых двух из данных чисел делится на оставшееся третье. Обязательно ли все три числа равны?
На плоскости отметили 30 точек, никакие три из которых не лежат на одной прямой, и провели семь красных прямых, не проходящих через отмеченные точки. Могло ли случиться, что каждый отрезок, соединяющий какие-то две отмеченные точки, пересекается хоть с одной красной прямой?
В квадрате $4\times4$ расставили целые числа так, что в каждом из восьми рядов (строках и столбцах) сумма чисел одна и та же. Семь чисел известны, а остальные скрыты (см. рисунок). <img src="/storage/problem-media/66692/problem_66692_img_2.png"> Можно ли по имеющимся данным восстановить
а) хотя бы одно скрытое число;
б) хотя бы два скрытых числа?
На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что $AK = AC, BK = LC$. Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.
На доске $6\times6$ расставили шесть не угрожающих друг другу ладей. Затем каждое не занятое ладьёй поле покрасили по такому правилу: если ладьи, угрожающие этому полю, находятся от него на одинаковом расстоянии, то это поле закрашивают в красный цвет, а если на разном – то в синий цвет. Могли ли все не занятые поля оказаться
а) красными;
б) синими?