Олимпиадные задачи из источника «осенний тур, сложный вариант, 8-9 класс» - сложность 3 с решениями

Число  <img align="absmiddle" src="/storage/problem-media/64453/problem_64453_img_2.gif">  представили в виде несократимой дроби.

Докажите, что если  3<i>n</i> + 1  – простое число, то числитель получившейся дроби делится на  3<i>n</i> + 1.

В окружность вписан 101-угольник. Из каждой его вершины опустили перпендикуляр на прямую, содержащую противоположную сторону.

Докажите, что хотя бы у одного из перпендикуляров основание попадёт на сторону (а не на её продолжение).

Петя нарисовал на плоскости квадрат, разделил на 64 одинаковых квадратика и раскрасил их в шахматном порядке в чёрный и белый цвета. После этого он загадал точку, находящуюся строго внутри одного из этих квадратиков. Вася может начертить на плоскости любую замкнутую ломаную без самопересечений и получить ответ на вопрос, находится ли загаданная точка строго внутри ломаной или нет. За какое наименьшее количество таких вопросов Вася может узнать, какого цвета загаданная точка – белого или чёрного?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка