Олимпиадные задачи из источника «осенний тур, сложный вариант, 8-9 класс» - сложность 2-4 с решениями

Имеется многоугольник. Для каждой стороны поделим её длину на сумму длин всех остальных сторон. Затем сложим все получившиеся дроби. Докажите, что полученная сумма меньше 2.

На кольцевом треке 2<i>n</i> велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее <i>n</i>² встреч.

Клетчатый прямоугольник разбит на двухклеточные доминошки. В каждой доминошке провели одну из двух диагоналей. Оказалось, что никакие диагонали не имеют общих концов. Докажите, что ровно два из четырёх углов прямоугольника являются концами диагоналей.

За круглым столом заседают <i>N</i> рыцарей. Каждое утро чародей Мерлин сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней: тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания?

(Рассадки, получающиеся друг из друга поворотом, считаются одинаковыми. Мерлин за столом не сидит.)

В остроугольном треугольнике <i>ABC</i> на высоте <i>BH</i> выбрана произвольная точка <i>P</i>. Точки <i>A'</i> и <i>C'</i> – середины сторон <i>BC</i> и <i>AB</i> соответственно. Перпендикуляр, опущенный из <i>A'</i> на <i>CP</i>, пересекается с перпендикуляром, опущенным из <i>C'</i> на <i>AP</i>, в точке <i>K</i>. Докажите, что точка <i>K</i> равноудалена от точек <i>A</i> и <i>C</i>.

Петя умеет на любом отрезке отмечать точки, которые делят этот отрезок пополам или в отношении  <i>n</i> : (<i>n</i> + 1),  где <i>n</i> – любое натуральное число. Петя утверждает, что этого достаточно, чтобы на любом отрезке отметить точку, которая делит его в любом заданном рациональном отношении. Прав ли он?

На плоскости дана прямая. С помощью пятака постройте две точки какой-нибудь прямой, перпендикулярной данной. Разрешаются такие операции: отметить точку, приложить пятак к ней и обвести его; отметить две точки (на расстоянии меньше диаметра пятака), приложить пятак к ним и обвести его. Нет возможности прикладывать пятак к прямой так, чтобы она его касалась.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка