Олимпиадные задачи из источника «19 турнир (1997/1998 год)» для 3-6 класса - сложность 2 с решениями

Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.

Докажите, что он сделал чётное число диагональных ходов.

а) Каким наименьшим числом прямых можно разрезать все клетки доски 3×3? (Чтобы клетка была разрезана, прямая должна проходить через внутреннюю точку этой клетки.)

б) Та же задача для доски 4×4.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка