Олимпиадные задачи из источника «весенний тур, основной вариант, 8-9 класс» для 10 класса - сложность 1-5 с решениями
весенний тур, основной вариант, 8-9 класс
НазадВ углу шахматной доски размером <i>m×n</i> полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
В равностороннем треугольнике <i>ABC</i> на стороне <i>AB</i> взята точка <i>D</i> так, что <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>.
Докажите,что сумма <i>n</i> – 1 углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей, равна 30°:
а) при <i>n</i> = 3;
б) при произвольном <i>n</i>.
В ряд выписаны действительные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a</i><sub>1996</sub>. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.
Положительные числа <i>a, b, c</i> таковы, что <i>a</i>² + <i>b</i>² – <i>ab = c</i>². Докажите, что (<i>a – c</i>)(<i>b – c</i>) ≤ 0.