Олимпиадные задачи из источника «осенний тур, основной вариант, 8-9 класс» - сложность 2 с решениями
осенний тур, основной вариант, 8-9 класс
НазадМожно ли из последовательности 1, ½, ⅓, ... выбрать (сохраняя порядок)
а) сто чисел,
б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (<i>a<sub>k</sub> = a</i><sub><i>k</i>–2</sub> – <i>a</i><sub><i>k</i>–1</sub>)?
На плоскости дан квадрат 8×8, разбитый на клеточки 1×1. Его покрывают прямоугольными равнобедренными треугольниками (два треугольника закрывают одну клетку). Имеется 64 черных и 64 белых треугольника. Рассматриваются "правильные" покрытия – такие, что каждые два треугольника, имеющие общую сторону, разного цвета. Сколько существует правильных покрытий?