Олимпиадные задачи из источника «осенний тур, основной вариант, 10-11 класс» для 10-11 класса - сложность 2-4 с решениями

Рассматривается последовательность, <i>n</i>-й член которой есть первая цифра числа 2<sup><i>n</i></sup>.

Докажите, что количество различных "слов" длины 13 – наборов из 13 подряд идущих цифр – равно 57.

Периоды двух последовательностей – <i>m</i> и <i>n</i> – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?

Докажите, что для любых положительных чисел <i>а</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> справедливо неравенство

<img align="absmiddle" src="/storage/problem-media/98245/problem_98245_img_2.gif">

Покажите, как разбить пространство

  а) на одинаковые тетраэдры,

  б) на одинаковые равногранные тетраэдры

(тетраэдр называется <i>равногранным</i>, если все его грани – равные треугольники).

Коэффициенты квадратного уравнения  <i>x</i>² + <i>px + q</i> = 0  изменили не больше чем на 0,001.

Может ли больший корень уравнения измениться больше, чем на 1000?

Фигура Ф представляет собой пересечение <i>n</i> кругов  (<i>n</i> ≥ 2,  радиусы не обязательно одинаковы). Какое максимальное число криволинейных "сторон" может иметь фигура Ф?  (Криволинейная сторона – это участок границы Ф, принадлежащий одной из окружностей и ограниченный точками пересечения с другими окружностями.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка