Олимпиадные задачи из источника «осенний тур, основной вариант, 8-9 класс» для 9-11 класса - сложность 1-2 с решениями
осенний тур, основной вариант, 8-9 класс
НазадСтороны <i>AB, BC, CD</i> и <i>DA</i> четырёхугольника <i>ABCD</i> равны соответственно сторонам <i>A'B', B'C', C'D'</i> и <i>D'A'</i> четырёхугольника <i>A'B'C'D'</i>, причём известно, что <i>AB || CD</i> и <i>B'C' || D'A'</i>. Докажите, что оба четырёхугольника – параллелограммы.
Для каждой точки <i>C</i> полуокружности с диаметром <i>AB</i> (<i>C</i> отлична от <i>A</i> и <i>B</i>) на сторонах <i>AC</i> и <i>BC</i> треугольника <i>ABC</i> построены вне треугольника квадраты. Найдите геометрическое место середин отрезков, соединяющих их центры.
Квадрат 8×8 клеток выкрашен в белый цвет. Разрешается выбрать в нём любой прямоугольник из трёх клеток и перекрасить все их в противоположный цвет (белые в чёрный, чёрные – в белый). Удастся ли несколькими такими операциями перекрасить весь квадрат в чёрный цвет?
Дано:
<img align="absmiddle" src="/storage/problem-media/98065/problem_98065_img_2.gif">
Докажите, что <img align="absmiddle" src="/storage/problem-media/98065/problem_98065_img_3.gif">