Олимпиадные задачи из источника «весенний тур, тренировочный вариант, 9-10 класс» для 1-8 класса - сложность 2-5 с решениями

Известно, что в трапецию можно вписать окружность.

Докажите, что окружности, построенные на боковых сторонах трапеции как на диаметрах, касаются друг друга. <small>Также доступны документы в формате TeX</small>

Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?

Найти шесть различных натуральных чисел, произведение любых двух из которых делится на сумму этих двух чисел.

Положительные числа <i>a, b, c, d</i> таковы, что  <i>a ≤ b ≤ c ≤ d</i>  и  <i>a + b + c + d</i> ≥ 1.  Докажите, что  <i>a</i>² + 3<i>b</i>² + 5<i>c</i>² + 7<i>d</i>² ≥ 1.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка