Олимпиадные задачи из источника «2009 год» для 10 класса - сложность 2 с решениями
Дан такой набор из 2009 чисел, что если каждое число в наборе заменить на сумму остальных чисел, то получится тот же набор.
Найдите произведение всех чисел набора.
Задайте формулой какую-нибудь квадратичную функцию, график которой пересекает оси координат в вершинах прямоугольного треугольника.
Существуют ли нечётные целые числа <i>х, у</i> и <i>z</i>, удовлетворяющие равенству (<i>x + y</i>)² + (<i>x + z</i>)² = (<i>y + z</i>)²?
Пусть<i> α </i>,<i> β </i>,<i> γ </i>и<i> δ </i> — градусные меры углов некоторого выпуклого четырехугольника. Всегда ли из этих четырех чисел можно выбрать три числа так, чтобы они выражали длины сторон некоторого треугольника (например, в метрах)?
Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел. Какое из оставшихся чисел стоит на сотом месте?
В футбольном турнире участвовало 20 команд (каждая сыграла с каждой из остальных по одному матчу). Могло ли в результате оказаться так, что каждая из команд-участниц выиграла столько же матчей, сколько сыграла вничью?
При каких значениях <i>c</i> числа sin α и cos α являются корнями квадратного уравнения 5<i>x</i>² – 3<i>x + c</i> = 0 (α – некоторый угол)?