Олимпиадные задачи из источника «2006 год» для 6 класса - сложность 2 с решениями
На клетчатой бумаге нарисован прямоугольник 5x9. В левом нижнем углу стоит фишка. Коля и Серёжа по очереди передвигают ее на любое количество клеток либо вправо, либо вверх. Первым ходит Коля. Выигрывает тот, кто поставит фишку в правый верхний. Кто выигрывает при правильной игре?
В магическом квадрате суммы чисел в каждой строке, в каждом столбце и на обеих диагоналях равны.
Можно ли составить магический квадрат 3×3 из первых девяти простых чисел?
В норке живёт семья из 24 мышей. Каждую ночь ровно четыре из них отправляются на склад за сыром.
Может ли так получиться, что в некоторый момент времени каждая мышка побывала на складе с каждой ровно по одному разу?
Чтобы испечь сто блинов, маме требуется 30 минут, а Ане – 40 минут. Андрюша готов съесть 100 блинов за час. Мама с Аней пекут блины без остановки, а Андрюша непрерывно их поедает. Через какое время после начала этого процесса на столе окажется ровно сто блинов?
В стране Полосатии произошёл переворот и новый лидер приказал перекроить старый флаг на новый (см. рисунки). Как выполнить такой приказ, если разрешается разрезать старый флаг ровно на четыре части?<div align="center"><img src="/storage/problem-media/104076/problem_104076_img_2.jpg"></div>
Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.