Олимпиадные задачи из источника «11 класс» - сложность 2-4 с решениями
11 класс
НазадВ четырёхугольнике <i>ABCD AB = BC</i>, ∠<i>A</i> = ∠<i>B</i> = 20°, ∠<i>C</i> = 30°. Продолжение стороны <i>AD</i> пересекает <i>BC</i> в точке <i>M</i>, а продолжение стороны <i>CD</i> пересекает <i>AB</i> в точке <i>N</i>. Найдите угол <i>AMN</i>.
Из точки, не лежащей в плоскости, проведены к этой плоскости перпендикуляр и три наклонные, проекции которых на данную плоскость равны a, b и c. Найдите длину перпендикуляра, если наклонные образуют с плоскостью углы, сумма которых равна 90°.
Решите систему уравнений:
<i>x</i>² + 4sin²<i>y</i> – 4 = 0,
cos <i>x</i> – 2cos²<i>y</i> – 1 = 0.
Найти все такие натуральные <i>k</i>, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.