Олимпиадные задачи из источника «11 (2013 год)» для 11 класса - сложность 2-4 с решениями

Трапеция <i>ABCD</i> вписана в окружность <i>w</i>  (<i>AD</i> || <i>BC</i>).  Окружности, вписанные в треугольники <i>ABC</i> и <i>ABD</i>, касаются оснований трапеции <i>BC</i> и <i>AD</i> в точках <i>P</i> и <i>Q</i> соответственно. Точки <i>X</i> и <i>Y</i> – середины дуг <i>BC</i> и <i>AD</i> окружности <i>w</i>, не содержащих точек <i>A</i> и <i>B</i> соответственно. Докажите, что прямые <i>XP</i> и <i>YQ</i> пересекаются на окружности <i>w</i>.

В остроугольном треугольнике <i>ABC</i> проведены высоты <i>AP</i> и <i>BQ</i>, а также медиана <i>CM</i>. Точка <i>R</i> – середина <i>CM</i>. Прямая <i>PQ</i> пересекает прямую <i>AB</i> в точке <i>T</i>. Докажите, что  <i>OR</i>⊥<i>TC</i>,  где <i>O</i> – центр описанной окружности треугольника <i>ABC</i>.

На сторонах четырёхугольника <i>ABCD</i> с перпендикулярными диагоналями во внешнюю сторону построены подобные треугольники <i>ABM, CBP, CDL</i> и <i>ADK</i> (соседние ориентированы по-разному). Докажите, что  <i>PK = ML</i>.

Существует ли многогранник, у которого отношение площадей любых двух граней не меньше 2?

Внутри угла <i>AOD</i> проведены лучи <i>OB</i> и <i>OC</i>, причём  ∠<i>AOB</i> = ∠<i>COD</i>.  В углы <i>AOB</i> и <i>COD</i> вписаны непересекающиеся окружности.

Докажите, что точка пересечения общих внутренних касательных к этим окружностям лежит на биссектрисе угла <i>AOD</i>.<div align="center"><img src="/storage/problem-media/64339/problem_64339_img_2.gif"></div>

Диагонали вписанного четырёхугольника <i>ABCD</i> пересекаются в точке <i>O</i>. Описанные окружности треугольников <i>AOB</i> и <i>COD</i> пересекаются в точке <i>M</i> на стороне <i>AD</i>. Докажите, что точка <i>O</i> – центр вписанной окружности треугольника <i>BMC</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка