Олимпиадные задачи из источника «07 (2009 год)» для 7-9 класса - сложность 1-3 с решениями
07 (2009 год)
НазадВ некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?
Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (<i>Исследование проводить не требуется.</i>)
В треугольнике <i>ABC AA</i><sub>1</sub> и <i>BB</i><sub>1</sub> – высоты. На стороне <i>AB</i> выбраны точки <i>M</i> и <i>K</i> так, что <i>B</i><sub>1</sub><i>K || BC</i> и <i>MA</i><sub>1</sub> || <i>AC</i>. Докажите, что ∠<i>AA</i><sub>1</sub><i>K</i> = ∠<i>BB</i><sub>1</sub><i>M</i>.
Квадрат и прямоугольник одинакового периметра имеют общий угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали квадрата.
На рисунке изображен параллелограмм и отмечена точка <i>P</i> пересечения его диагоналей. Проведите через <i>P</i> прямую так, чтобы она разбила параллелограмм на две части, из которых можно сложить ромб.<div align="center"><img src="/storage/problem-media/116078/problem_116078_img_2.png"></div>