Олимпиадные задачи из источника «11 класс. Второй день» для 8 класса - сложность 2-3 с решениями
11 класс. Второй день
НазадВ равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.
В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника?
Некоторые неотрицательные числа $a$, $b$, $c$ удовлетворяют равенству $a+b+c=2\sqrt{abc}$. Докажите, что $bc\geqslant b+c$.