Олимпиадные задачи из источника «2011 год» для 3-8 класса - сложность 2 с решениями
В прямоугольном треугольнике <i>ABC</i> с прямым углом <i>C</i> угол <i>A</i> равен 30°, точка <i>I</i> – центр вписанной окружности <i>ABC, D</i> – точка пересечения отрезка <i>BI</i> с этой окружностью. Докажите, что отрезки <i>AI</i> и <i>CD</i> перпендикулярны.
В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?
Что больше: 2011<sup>2011</sup> + 2009<sup>2009</sup> или 2011<sup>2009</sup> + 2009<sup>2011</sup>?
Точки <i>M</i> и <i>N</i> – середины боковых сторон <i>AB</i> и <i>CD</i> трапеции <i>ABCD</i>. Перпендикуляр, опущенный из точки <i>M</i> на диагональ <i>AC</i>, и перпендикуляр, опущенный из точки <i>N</i> на диагональ <i>BD</i>, пересекаются в точке <i>P</i>. Докажите, что <i>PA = PD</i>.
Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?
Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?