Олимпиадные задачи из источника «2005 год» для 7 класса

Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число?

По кругу расставлены 2005 натуральных чисел.

Доказать, что найдутся два соседних числа, после выкидывания которых оставшиеся числа нельзя разбить на две группы с равной суммой.

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

Найти хотя бы одно целочисленное решение уравнения  <i>a</i>²<i>b</i>² + <i>a</i>² + <i>b</i>² + 1 = 2005.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка