Олимпиадные задачи из источника «2004 год» - сложность 2 с решениями
Существует ли тетраэдр, все грани которого — равные прямоугольные треугольники?
Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.
Докажите, что количество членов прогрессии тоже степень двойки.
У квадратного уравнения <i>x</i>² + <i>px + q</i> = 0 коэффициенты <i>p</i> и <i>q</i> увеличили на единицу. Эту операцию повторили девять раз.
Могло ли оказаться, что у каждого из десяти полученных уравнений корни – целые числа?
Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на 17% (курс не округляется).
Может ли курс акций дважды принять одно и то же значение?
Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на <i>n</i>%, где <i>n</i> – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли <i>n</i>, для которого курс акций может дважды принять одно и то же значение?
Разрежьте изображённую на рисунке трапецию на три части и сложите из них квадрат. <img src="/storage/problem-media/105170/problem_105170_img_2.png">
У квадратного уравнения <i>x</i>² + <i>px + q</i> = 0 коэффициенты <i>p</i> и <i>q</i> увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами.