Олимпиадные задачи из источника «2002 год» для 11 класса - сложность 3 с решениями
В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих.
Докажите, что на графике функции <i>y = x</i>³ можно отметить такую точку <i>A</i>, а на графике функции <i>y = x</i>³ + |<i>x</i>| + 1 – такую точку <i>B</i>, что расстояние <i>AB</i> не превышает <sup>1</sup>/<sub>100</sub>.
Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?