Олимпиадные задачи из источника «1998 год» - сложность 2 с решениями

В остроугольном треугольнике <i>ABC</i> провели высоты <i>AD</i> и <i>CE</i>. Построили квадрат <i>ACPQ</i> и прямоугольники <i>CDMN</i> и <i>AEKL</i>, у которых  <i>AL = AB</i>  и

<i>CN = CB</i>.  Докажите, что площадь квадрата <i>ACPQ</i> равна сумме площадей прямоугольников <i>AEKL</i> и <i>CDMN</i>.

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.

Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.

Пусть <i>a, b, c</i> – такие целые неотрицательные числа, что   28<i>a</i> + 30<i>b</i> + 31<i>c</i> = 365.  Докажите, что  <i>a + b + c</i> = 12.

Путешественник посетил деревню, в котором каждый человек либо всегда говорит правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.

Является ли число  4<sup>9</sup> + 6<sup>10</sup> + 3<sup>20</sup>  простым?

Некоторые из чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ..., <i>a</i><sub>200</sub>написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1 до 100, записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100 до 1, записанные в порядке убывания. Докажите, что среди чисел<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ..., <i>a</i><sub>100</sub>содержатся все натуральные числа от 1 до 100 включительно.

Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

Найдутся ли натуральные числа <i>x, y</i> и <i>z</i>, удовлетворяющие условию  28<i>x</i> + 30<i>y</i> + 31<i>z</i> = 365?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка