Олимпиадные задачи из источника «11 класс»
11 класс
НазадВ треугольнике<i> ABC </i>известно, что<i> AA</i>1– медиана,<i> AA</i>2– биссектриса,<i> K </i>– такая точка на<i> AA</i>1, для которой<i> KA</i>2<i> || AC </i>. Докажите, что<i> AA</i>2<i> <img src="/storage/problem-media/108188/problem_108188_img_2.gif"> KC </i>.
Существует ли такой многогранник и точка вне него, что из этой точки не видно ни одной из его вершин?
Доказать, что существует бесконечно много таких составных <i>n</i>, что 3<sup><i>n</i>–1</sup> – 2<sup><i>n</i>–1</sup> кратно <i>n</i>.
Для какого наибольшего<i>n</i>можно придумать две бесконечные в обе стороны последовательности<i>A</i>и<i>B</i>такие, что любой кусок последовательности<i>B</i>длиной<i>n</i>содержится в<i>A</i>,<i>A</i>имеет период 1995, а<i>B</i>этим свойством не обладает (непериодична или имеет период другой длины)?<font size="-1">Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.</font>
Разрезать отрезок [–1, 1] на чёрные и белые отрезки так, чтобы интегралы от любой а) линейной функции; б) квадратного трёхчлена по белым и чёрным отрезкам были равны.
Можно ли рёбра <i>n</i>-угольной призмы раскрасить в три цвета так, чтобы на каждой грани были все три цвета и в каждой вершине сходились рёбра разных цветов, если а) <i>n</i> = 1995; б) <i>n</i> = 1996.
Докажите, что<div align="CENTER"> | <i>x</i>| + | <i>y</i>| + | <i>z</i>|$\displaystyle \le$| <i>x</i> + <i>y</i> - <i>z</i>| + | <i>x</i> - <i>y</i> + <i>z</i>| + |-<i>x</i> + <i>y</i> + <i>z</i>|, </div>где<i>x</i>,<i>y</i>,<i>z</i> — действительные числа.