Олимпиадные задачи из источника «10 класс»
10 класс
НазадСуществует ли такой многочлен <i>P</i>(<i>x</i>), что у него есть отрицательный коэффициент, а все коэффициенты любой его степени (<i>P</i>(<i>x</i>))<sup><i>n</i></sup>, <i>n</i> > 1, положительны?
Рассматривается произвольный многоугольник (не обязательно выпуклый).
а) Всегда ли найдётся хорда многоугольника, которая делит его на две равновеликие части?
б) Докажите, что любой многоугольник можно разделить некоторой хордой на части, площадь каждой из которых не меньше чем ⅓ площади многоугольника. (Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур.)
<i>D</i>– точка на стороне<i>BC</i>треугольника<i>ABC</i>. B треугольники<i>ABD, ACD</i>вписаны окружности, и к ним проведена общая внешняя касательная (отличная от<i>BC</i>), пересекающая<i>AD</i>в точке<i>K</i>. Докажите, что длина отрезка<i>AK</i>не зависит от положения точки<i>D</i>на<i>BC</i>.
Каждый из 1994 депутатов парламента дал пощечину ровно одному своему коллеге. Докажите, что можно составить парламентскую комиссию из 665 человек, члены которой не выясняли отношений между собой указанным выше способом.
Бесконечная последовательность чисел <i>x<sub>n</sub></i> определяется условиями: <i>x</i><sub><i>n</i>+1</sub> = 1 – |1 – 2<i>x<sub>n</sub></i>|, причём 0 ≤ <i>x</i><sub>1</sub> ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая а) в том б) и только в том случае, когда <i>x</i><sub>1</sub> рационально.
Ученик не заметил знака умножения между двумя семизначными числами и написал одно четырнадцатизначное число, которое оказалось в три раза больше их произведения. Найдите эти числа.