Олимпиадные задачи из источника «1989 год» для 7 класса - сложность 2 с решениями
Подмножество<i>X</i>множества "двузначных" чисел 00, 01, ..., 98, 99 таково, что в любой бесконечной последовательности цифр найдутся две цифры, стоящие рядом и образующие число из<i>X</i>. Какое наименьшее количество чисел может содержаться в<i>X</i>?
Часть клеток бесконечной клетчатой бумаги покрашена в красный цвет, остальные — в белый (не обязательно в шахматном порядке). По красным клеткам прыгает кузнечик, по белым — блоха, причём каждый прыжок может быть сделан на любое расстояние по вертикали или горизонтали. Докажите, что кузнечик и блоха могут оказаться рядом, сделав в общей сложности (в сумме) не более трёх прыжков.