Олимпиадные задачи из источника «9 класс» - сложность 3-5 с решениями

На координатной плоскости нарисованы круги радиусом 1/14 с центрами в каждой точке, у которой обе координаты — целые числа. Докажите, что любая окружность радиусом 100 пересечёт хотя бы один нарисованный круг.

Произведение некоторых 48 натуральных чисел имеет ровно 10 различных простых делителей.

Докажите, что произведение некоторых четырёх из этих чисел является квадратом натурального числа.

Решите систему неравенств

    |<i>x</i>| < |<i>y – z + t</i>|,

    |<i>y</i>| < |<i>x – z + t</i>|,

    |<i>z</i>| < |<i>x – y + t</i>|,

    |<i>t</i>| < |<i>x – y + z</i>|.

На листе бумаги отмечены точки<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник<i>ABCD</i>прямоугольником?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка