Олимпиадные задачи из источника «1983 год» для 3-8 класса - сложность 2 с решениями

Двадцать городов соединены 172 авиалиниями.

Доказать, что, используя эти авиалинии, можно из любого города перелететь в любой другой (быть может, делая пересадки).

Может ли квадрат какого-либо натурального числа начинаться с 1983 девяток?

Найти наименьшее натуральное число, начинающееся с цифры 4 и уменьшающееся в четыре раза от перестановки этой цифры в конец числа.

Белая плоскость произвольным образом забрызгана чёрной тушью. Доказать, что для любого положительного<i>l</i>существует отрезок длины<i>l</i>, у которого оба конца одного цвета.

Найти все пары целых чисел  (<i>x, y</i>),  удовлетворяющих уравнению  <i>x</i>² = <i>y</i>² + 2<i>y</i> + 13.

Dписанная окружность треугольника <i>ABC</i> касается сторон <i>AB, BC</i> и <i>AC</i> в точках <i>C</i><sub>1</sub>, <i>A</i><sub>1</sub> и <i>B</i><sub>1</sub> соответственно. Известно, что  <i>AA</i><sub>1</sub> = <i>BB</i><sub>1</sub> = <i>CC</i><sub>1</sub>.  Докажите, что треугольник <i>ABC</i> правильный.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка