Олимпиадные задачи из источника «9 класс, 2 тур» - сложность 2-5 с решениями

Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырёхугольников?

В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км.

Какое из двух чисел больше:   а)   <img src="/storage/problem-media/79303/problem_79303_img_2.gif">   (<i>n</i> двоек) или   <img src="/storage/problem-media/79303/problem_79303_img_3.gif"> (<i>n</i> − 1  тройка);   б)   <img src="/storage/problem-media/79303/problem_79303_img_3.gif">   (<i>n</i> троек) или   <img src="/storage/problem-media/79303/problem_79303_img_4.gif">   (<i>n</i> − 1  четвёрка).

В окружность вписан выпуклый 7-угольник. Известно, что какие-то три его угла равны120<sup><tt>o</tt></sup>. Доказать, что найдутся две его стороны, имеющие одинаковую длину.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка