Олимпиадные задачи из источника «7 класс, 1 тур»
7 класс, 1 тур
НазадВ городе Васюки у всех семей были отдельные дома. В один прекрасный день каждая семья переехала в дом, который раньше занимала другая семья. В связи с этим было решено покрасить все дома в красный, синий или зелёный цвет, причём так, чтобы для каждой семьи цвет нового и старого домов не совпадал. Можно ли это сделать?
В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.
Внутри правильного треугольника<i>ABC</i>лежит точка<i>O</i>. Известно, что$\angle$<i>AOB</i>= 113<sup><tt>o</tt></sup>,$\angle$<i>BOC</i>= 123<sup><tt>o</tt></sup>. Найти углы треугольника, стороны которого равны отрезкам<i>OA</i>,<i>OB</i>,<i>OC</i>.
На 99 карточках пишутся числа 1, 2, 3, ..., 99. Затем карточки перемешиваются, раскладываются чистыми сторонами вверх и на чистых сторонах снова пишутся числа 1, 2, 3, 4, ..., 99. Для каждой карточки числа, стоящие на ней, складываются и 99 полученных сумм перемножаются. Доказать, что в результате получится чётное число.
На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая <i> одним ходом</i> взяла <i>все</i> чёрные шашки, включая две первоначально стоявшие?