Олимпиадные задачи из источника «1968 год» для 4-9 класса - сложность 3 с решениями
Правильный треугольник<i>ABC</i>разбит на<i>N</i>выпуклых многоугольников так, что каждая прямая пересекает не более 40 из них (мы говорим, что прямая пересекает многоугольник, если они имеют общую точку, например, если прямая проходит через вершину многоугольника). Может ли быть<i>N</i>больше миллиона?
Внутри выпуклого многоугольника<i>M</i>помещена окружность максимально возможного радиуса<i>R</i>(это значит, что внутри<i>M</i>нельзя поместить окружность большего радиуса). Известно, что внутри можно провернуть отрезок длины 1 на любой угол (т.е. мы можем двигать единичный отрезок как твердый стержень по плоскости так, чтобы он не вылезал за пределы многоугольника<i>M</i>и при этом повернулся на любой заданный угол). Докажите, что<i>R</i>$\ge$1/3.
Дано натуральное число <i>N</i>. С ним производится следующая операция: каждая цифра этого числа заносится на отдельную карточку (при этом разрешается добавлять или выбрасывать любое число карточек, на которых написана цифра 0), и затем эти карточки разбивают на две кучи. В каждой из них карточки располагаются в произвольном порядке, и полученные два числа складываются. С полученным числом <i>N</i><sub>1</sub> проделывается такая же операция, и т.д. Докажите, что за 15 шагов из <i>N</i> можно получить однозначное число.
Известно, что <i>a<sup>n</sup> – b<sup>n</sup></i> делится на <i>n</i> (<i>a, b, n</i> – натуральные числа, <i>a ≠ b</i>). Доказать, что <img width="60" height="51" align="MIDDLE" border="0" src="/storage/problem-media/78682/problem_78682_img_2.gif"> делится на <i>n</i>.
Двухсотзначное число89252525...2525 умножено на число 444<i>x</i>18<i>y</i>27 (<i>x</i>и<i>y</i>— неизвестные цифры). Оказалось, что 53-я цифра полученного числа (считая справа) есть 1, а 54-я — 0. Найти<i>x</i>и<i>y</i>.
Два маляра красят забор, огораживающий дачные участки. Они приходят через день и красят по одному участку (участков 100 штук) в красный или зелёный цвет. Первый маляр дальтоник и путает цвета, он помнит, что и в какой цвет он сам покрасил, и видит, что покрасил второй маляр, но не знает, в какой цвет. Первый маляр добивается того, чтобы в наибольшем числе мест зелёный участок граничил с красным. Какого наибольшего числа переходов он может добиться (как бы ни действовал второй маляр)? <b>Замечание.</b> Считается, что дачные участки расположены в одну линию.
Можно ли разбить все целые неотрицательные числа на 1968 непустых классов так, чтобы в каждом классе было хотя бы одно число и выполнялось бы следующее условие: если число <i>m</i> получается из числа <i>n</i> вычёркиванием двух рядом стоящих цифр или одинаковых групп цифр, то и <i>m</i>, и <i>n</i> принадлежат одному классу (например, числа 7, 9339337, 93223393447, 932239447 принадлежат одному классу)?
Двое играют в следующую игру: имеется две кучи конфет. Играющие делают ход по очереди. Ход состоит в том, что играющий съедает одну из куч, а другую делит на две (равные или неравные) части. Если он не может разделить кучу, так как там всего одна конфета, то он её съедает и выигрывает. Вначале в кучах было 33 и 35 конфет. Кто выиграет, начинающий или его партнер, и как для этого надо играть?
Из пункта <i>A</i> одновременно вылетают 100 самолетов (флагманский и 99 дополнительных). С полным баком горючего самолет может пролететь 1000 км. В полёте самолеты могут передавать друг другу горючее. Самолет, отдавший горючее другим, совершает планирующую посадку. Каким образом надо совершать перелёт, чтобы флагман пролетел возможно дальше?
Существует ли четырёхугольник<i>ABCD</i>площади 1 такой, что для любой точки<i>O</i>внутри него площадь хотя бы одного из треугольников<i>OAB</i>,<i>OBC</i>,<i>OCD</i>,<i>DOA</i>иррациональна.