Олимпиадные задачи из источника «10 класс, 1 тур» для 10-11 класса - сложность 1-5 с решениями
10 класс, 1 тур
НазадБумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?
<i>X</i> – число, большее 2. Некто пишет на карточках числа: 1, <i>X, X</i>², <i>X</i>³, <i>X</i><sup>4</sup>, ..., <i>X<sup>k</sup></i> (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом.
Шестизначное число делится на 37 и имеет хотя бы две различные цифры. Его первая и четвёртая цифры – не нули.
Докажите, что, переставив цифры в данном числе, можно получить другое число, тоже кратное 37 и не начинающееся с нуля.
Окружности<i>O</i><sub>1</sub>и<i>O</i><sub>2</sub>лежат внутри треугольника и касаются друг друга извне, причём окружность<i>O</i><sub>1</sub>касается двух сторон треугольника, а окружность<i>O</i><sub>2</sub>-- тоже касается двух сторон треугольника, но не тех же, что<i>O</i><sub>1</sub>. Доказать, что сумма радиусов этих окружностей больше радиуса окружности, вписанной в треугольник.