Олимпиадные задачи из источника «8 класс, 2 тур» для 9-10 класса - сложность 3 с решениями

Две окружности<i>O</i><sub>1</sub>и<i>O</i><sub>2</sub>пересекаются в точках<i>M</i>и<i>P</i>. Обозначим через<i>MA</i>хорду окружности<i>O</i><sub>1</sub>, касающуюся окружности<i>O</i><sub>2</sub>в точке<i>M</i>, а через<i>MB</i>— хорду окружности<i>O</i><sub>2</sub>, касающуюся окружности<i>O</i><sub>1</sub>в точке<i>M</i>. На прямой<i>MP</i>отложен отрезок<i>PH</i>=<i>MP</i>. Доказать, что четырёхугольник<i>MAHB</i>можно вписать в окружность.

Из чисел<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>,<i>x</i><sub>3</sub>,<i>x</i><sub>4</sub>,<i>x</i><sub>5</sub>можно образовать десять попарных сумм; обозначим их через<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a</i><sub>10</sub>. Доказать, что зная числа<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a</i><sub>10</sub>(но не зная, разумеется, суммой каких именно двух чисел является каждое из них), можно восстановить числа<i>x</i><sub>1</sub>,<i>x</i><sub>2</sub>,<i>x...

Как надо расположить числа 1, 2, ..., 1962 в последовательности <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>1962</sub>, чтобы сумма  |<i>a</i><sub>1</sub> – <i>a</i><sub>2</sub>| + |<i>a</i><sub>2</sub> – <i>a</i><sub>3</sub>| + ... + |<i>a</i><sub>1961</sub> – <i>a</i><sub>1962</sub>| + |<i>a</i><sub>1962</sub> – <i>a</i><sub>1</sub>|  была наибольшей?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка